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Segregation and integration are two fundamental yet competing computations in cognition. For example, in serial speech processing,
stable perception necessitates the sequential establishment of perceptual representations to remove irrelevant features for achieving
invariance. Whereas multiple features need to combine to create a coherent percept. How to simultaneously achieve seemingly
contradicted computations of segregation and integration in a serial process is unclear. To investigate their neural mechanisms, we
used loudness and lexical tones as a research model and employed a novel multilevel oddball paradigm with Electroencephalogram
(EEG) recordings to explore the dynamics of mismatch negativity (MMN) responses to their deviants. When two types of deviants were
presented separately, distinct topographies of MMNs to loudness and tones were observed at different latencies (loudness earlier),
supporting the sequential dynamics of independent representations for two features. When they changed simultaneously, the latency
of responses to tones became shorter and aligned with that to loudness, while the topographies remained independent, yielding
the combined MMN as a linear additive of single MMNs of loudness and tones. These results suggest that neural dynamics can be
temporally synchronized to distinct sensory features and balance the computational demands of segregation and integration, grounding
for invariance and feature binding in serial processing.
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Introduction
“The sound must seem an echo to the sense:

Soft is the strain when Zephyr gently blows,
And the smooth stream in smoother numbers flows;
But when loud surges lash the sounding shore,
The hoarse, rough verse should like the torrent roar.”—

Alexander Pope.
The induction of any percepts depends on external signals

whose intensity is above an agent’s sensory threshold. The per-
ception of intensity, for example loudness in the auditory domain,
can be established independently from other features of the stim-
uli or various contexts (e.g. hearing “loud” regardless of whether
being “surges” or “roar”) (Zahorik and Wightman 2001). However,
effective interaction with the environment requires stable percep-
tion despite variations in basic attributes such as signal intensity
(e.g. understanding the word “poem” no matter whether one
says it softly or loudly). That is, abstract representation must be
established consistently and independently from the variation in
the physical realization—achieving the invariance of perception,
such as invariance to intensity, or invariance to different contexts
(Liberman et al. 1967; Barbour 2011). On the other hand, basic
attributes such as loudness need to combine with other features
(such as pitch) to create a coherent percept, such as “gently blows”
versus “torrent roar.” That is, in addition to the segregation of

features to achieve invariance, efficient perception necessitates
integration across different levels of features (Treisman and Gelade
1980). How the seemingly contradicted computations—segregation
for achieving invariance and integration for binding features and
creating coherent percepts—are implemented simultaneously is
unclear (Deco et al. 2015).

The sensation of intensity and frequency highlights the inde-
pendent yet intertwined perceptual processes, making the loud-
ness and pitch an optimal research model to investigate the mech-
anisms that balance segregation and integration. The percept
of loudness is closely related to the intensity of a sound. The
firing rate and the distribution of neurons are hypothesized to
mediate the encoding of signal intensity, which is independent
in distinct frequency channels in cochlear and combines non-
linearly at some later stages at the cortical level (Moore 1995,
Schreiner and Malone 2015). Whereas pitch is a subjective per-
cept related to the acoustic property of fundamental frequency
(f0). The percept of pitch is arguably encoded nonlinearly in a
seemingly tonotopic map in auditory cortices (Pantev et al. 1989;
Bendor and Wang 2005). In the hierarchical processing of speech,
invariance to background noise is more in nonprimary auditory
areas after processes in the primary auditory cortex (Kell and
McDermott 2019), suggesting that the abstract representation of
speech is established in a specific spatial and temporal manner.
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The distinct ways of encoding and representations indicate the
independence of loudness and pitch perception.

Despite the distinct ways of encoding intensity and frequency,
the perceptions of loudness and pitch interact. For example,
tracking loudness changes was influenced when sound frequency
dynamically fluctuated, suggesting that the interaction of pitch
and loudness occurs in the central auditory system (Neuhoff
et al. 1999). Moreover, in Mandarin Chinese, loudness contour can
have similar functions as pitch contour (c.f., lexical tone) that
serves as a primitive prosodic cue to derive phonological and
lexical-semantic information (Duanmu 2007). The loudness with
pitch contour together can boost the success rate of Mandarin
tone recognition in both simulated and actual cochlear implant
hearing (Meng et al. 2017). Recent studies further demonstrate
that the pitch process interacts with many acoustic attributes
in the context of complex stimuli such as speech and music
(McPherson and McDermott 2023).

The oddball paradigm can be an optimal protocol to investigate
the mechanisms that balance the segregation and integration
between multiple levels of features. In the oddball paradigm, a
novel token infrequently occurs within a sequence of repetitive
tokens. A prominent negative-going peak, termed mismatch
negativity (MMN), is evoked by the low probability stimuli
(deviant) compared with more frequently presented stimuli
(standard) (Jääskeläinen et al. 2004; Näätänen et al. 2005). The
fundamental presupposition of MMN is the establishment of
deviants’ neural representation that is different from the one
of standards. Therefore, MMN is an effective neural measure for
exploring neural representation (Näätänen 1995) and proven in
the auditory domain like frequency (Jacobsen and Schröger 2001)
and amplitude (Jacobsen et al. 2003). Moreover, the latency of
MMN is the upper bound of establishing the representation of
deviants. If the representation of loudness is first established
before tones, the deviant in the loudness would induce MMN
early than the deviant of tones. However, if the deviants in both
features are available and integrated, the MMN would reflect the
dynamics of integration. That is, by manipulating the inclusion
of deviant feature(s), MMN can “temporally isolate” the timing
of the establishment of representation, as well as reflect the
timing of feature integration. Previous MMN studies mostly
investigate multiple auditory features separately, for example,
duration and intensity (Näätänen et al. 2004; Fisher et al. 2011),
frequency, and phonological features (Pakarinen et al. 2007;
Lovio et al. 2009; Honbolygó et al. 2017). Here, we expanded the
oddball paradigm by including independent and simultaneous
manipulations of auditory attributes of intensity and frequency
and explored the mechanisms of separation and interaction
between the establishment processes of multilevel neural
representations.

The independent yet interactive nature of loudness and pitch
perception yields a hypothesis that a mechanism that balances
the segregation and integration between two neural represen-
tations should be available. In this study, EEG recordings were
employed to investigate the neural dynamics of segregation and
integration in responses to the changes of loudness, tones, as
well as their combination in a multilevel oddball paradigm, in
which we manipulated the sound type of the standards and
deviants and yielded Loudness Deviant (LD), Tones Deviant (TD), and
Combined Deviant (CD) conditions (Fig. 1A). Because of segregation
for establishing independent abstract loudness and pitch repre-
sentations, we predict that MMNs to LD and TD have indepen-
dent neural sources, but the latency of MMN to LD is earlier
than that to TD for manifesting the separation between neural

representations of loudness and tones in the hierarchical pro-
cessing of speech. When two features change simultaneously
in the CD condition, three scenarios of interaction could occur
(Fig. 1B). In the linear combination hypothesis, two single-feature
MMNs do not interact but linearly combine across the activation
duration, yielding the amplitude of the combined MMN as the
sum of two single-feature MMNs and peak latency between that
of two single-feature MMNs. In the feature domination hypothesis,
one feature overwhelms another and makes the combined MMN
have a similar response pattern and latency as the MMN of the
dominant feature. In the temporal-shift combination hypothesis, the
process of one feature shifts in time to temporally align with the
process of another feature for facilitating integration (Treisman
1996). For example, in the visual field, a face is represented
by neurons with small receptive fields in the early processing
stages. Different assemblies of neurons respond to different local
elements of the face, and the activity of these distributed popu-
lations of neurons in lower-level areas synchronizes temporally
to construct the complete face representation (Rossion 2013).
We propose that a similar temporal synchronization can occur
in the auditory domain when multiple auditory features are
present. Because of the faster processing speed of low-level fea-
tures, the processing of high-level features could be facilitated.
The temporally shifted responses combine with the processing
of another feature, resulting in the combined MMN amplitude
that linearly sums the two single-feature MMNs. This linear sum
occurs at a latency consistent with the MMN of the nonshifted
feature.

Materials and methods
Experimental model and subject details
Based on previous similar studies (Horváth et al. 2008) in which
the power of MMNs that was observed in different sequence
lengths, the target sample size is calculated ranging from 14 to
22 by using G∗Power (Faul et al. 2009). Combine with the length of
our auditory sequence, we take a moderate sample size of 20. So,
20 participants (four males; mean age: 22.56; range: 19–27) from
East China Normal University were recruited for this study. Mon-
etary incentives were provided for their participation. All partici-
pants had normal hearing without any neurological deficits (self-
reported). Protocols were approved by the institutional review
board at New York University Shanghai, which followed the Decla-
ration of Helsinki as a statement of ethical principles concerning
human testing. Written and informed consent was obtained for
every participant.

Method details
Stimuli
Two humming sounds of Chinese lexical tones (first level tone
and second rising tone) were used in our experiment, due to the
perception of simple frequency manipulations, such as pure tone
sinewaves are arguably not a categorization process, which is
not optimal to address our research question of segregation. The
lexical tone is a categorical perception (Si et al. 2017). Although
the processing of pitch level and pitch contour, as two dimensions
of lexical tones, can lateralize to different hemispheres (Wang
et al. 2013), both dimensions cooccur and change simultaneously
in Mandarin Chinese—they are processed as a whole and are
perceived holistically (Lee 2000; Xu and Emily 2001; Wang
et al. 2013). Therefore, we took advantage of the categorical
and interactive features and used lexical tones as stimuli. They
were recorded by a female speaker with a sampling frequency
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Fig. 1. Schematics of experimental procedures and hypotheses. (A) Experimental procedures of a multilevel oddball paradigm. Sequences of five auditory
waveforms are depicted for illustration purposes. Each auditory stimulus has a duration of 300 ms with an ISI of 300 ms. The left plot is the LD condition
in which the deviant sound has larger intensity (elongated amplitude highlighted with red contour) than the more frequently presented standard
sounds. Lexical tone (T1, first level tone, as an example) is the same in all stimuli in this condition. The middle plot depicts the TD condition. The
deviant stimulus (T2, second rising tone, denoted in red) differs from other standard stimuli, whereas the intensity of all stimuli is the same. The right
plot is the CD condition where both the intensity and lexical tone of the deviant are different from the standards (see Materials and methods for details.)
(B) Hypotheses regarding the potential interactive mechanism among multilevel deviant monitoring. Lines in each plot represent the hypothetical
deviant neural responses (resembling the mismatch negative, MMN) for each condition. A presupposition is that processes of deviant monitoring for
features at distinct levels are temporally isolated, as the peak latency for the basic attribute of LD (orange line) is earlier than that of tone deviant (blue
line). Moreover, the neural sources of deviant monitoring for both levels are presumably independent, as reflected in distinct topographic patterns in
noninvasive scalp electrophysiological recordings (hypothetical EEG topographic patterns are depicted for each condition). Three sets of hypotheses for
possible interaction between multilevel deviant monitoring are available. First, the sources of LD and TD monitoring could remain independent both
spatially and temporally, whereas the EEG measures linearly sum the activity from the monitoring at both levels when the two deviants are presented
simultaneously (green line in the left panel). This linearly combination hypothesis predicts that the peak latency of the CD condition should be in the
middle between the peak latencies of LD and TD conditions; the topography of the CD condition should be different from either single deviant condition.
Second, the deviant monitoring in the CD condition could be dominated by one of the features (feature domination hypothesis, middle panel), where one
feature deviant monitoring overwhelms (solid line) and makes the other absent (dashed line). The deviant monitoring responses in the CD condition
would resemble the responses in the dominant feature condition. The upper plot illustrates the situation of loudness dominant and the lower plot
for tone dominant. The responses to the CD are lifted for a better depiction. Third, the interaction could occur in the temporal domain as one of the
monitoring processes shifts in time (temporal-shift combination hypothesis, right panel). That is, the processing dynamics is interactive—The process
of deviant monitoring at one feature would alter the timing of the other. The upper plot demonstrates that the TD monitoring would be pulled forward
in time toward the LD monitoring, whereas the lower plot illustrates the opposite (the corresponding color arrows indicate the direction of temporal
shift). While the neural sources remain independent, the EEG measures linearly sum the activity from the monitoring at both levels after the temporal
shift (green lines). This temporal-shift combination hypothesis predicts that the peak latency of the CD condition should be consistent with the feature
that is not shifted; the topography of CD should also be different from either single deviant condition.

of 44.1 kHz and a duration of 300 ms (https://osf.io/mhgbj/
files/osfstorage/Stimuli). And the intensity sound pressure level
(SPL) of both sounds was adjusted to two levels—62 dB SPL
(soft) and 81 dB SPL (loud) using Praat (Boersma and Weenink
2021), yielding four auditory stimuli—soft first tone (sT1), soft
second tone (sT2), loud first tone (lT1), and loud second tone
(lT2). Stimuli were presented binaurally via plastic air tubes
connected to foam earplugs (ER-3C Insert Earphones; Etymotic
Research).

Procedures
A passive listening oddball paradigm was implemented in this
study. Participants were instructed to watch a silent landscape
documentary film while sequences of lexical tones were pre-
sented with an inter-stimulus interval (ISI) of 300 ms (Fig. 1). The
short ISI was determined by previous studies in which shorter ISI
induced stronger MMN effects (Schröger and Winkler 1995; Escera
et al. 2000). Participants were required to answer questions about
the content of the film at the end of the experiment.
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Table 1. Information regarding the experimental design. The number of each stimulus is demonstrated in parentheses.

Conditions Session 1 Session 2 Session 3 Session 4

Standard sT1 (972) lT1 (972) sT2 (972) lT2(972)
Loudness
Deviant

lT1 (81) sT1 (81) lT2 (81) sT2 (81)

Tones Deviant sT2 (81) lT2 (81) sT1 (81) lT1 (81)
Combined
Deviant

lT2 (81) sT2 (81) lT1 (81) sT1 (81)

The ratio between standard and deviant stimuli was 80:20
in this experiment. To eliminate experimental stimuli bias, the
experiment was divided into four sessions in which each type of
four auditory sound was utilized as standard and the other three
as deviants. The deviant stimuli were equally separated in three
conditions: (i) LD, (ii) TD, and (iii) CD (Fig. 1). The number of trials
in each condition was summarized in Table 1.

Taking Session 1 as an example, the soft first tone (sT1) was
selected as standard (972 trials in total); the remaining three
auditory stimuli were used as deviants (81 trials each, 243 trials
in total). Specifically, one session was divided into three blocks. In
each block, lT1, sT2, or lT2 was selected to be the LD (81 trials),
TD (81 trials), or CD (81 trials) as compared to the standard of
sT1 (324 trials). In each block, the deviants were presented in
a pseudorandomized order in a way that deviants never follow
each other and never appeared at the last place in the sequence.
The entire experiment included 4,860 trials in total and lasted
∼50 min.

Quantification and statistical analysis
EEG recording and preprocessing
EEG signals were recorded in an electromagnetically insulated
and sound-proof room using a 32-channel active electrode sys-
tem (Brain Vision actiCHamp; Brain Products) with a 1,000 Hz
sampling rate. Electrodes were mounted on an EasyCap that
had electrode holders set according to the 10–20 international
electrode system. Each electrode’s impedance was kept below 10
kΩ. The data were online referenced to the electrode of Cz, and
offline re-referenced to the average of all electrodes according
to a recent paper that investigated the effect of EEG referencing
methods on auditory MMN (Mahajan et al. 2017) demonstrating
that using the average re-reference yielded similar results in data
with different EEG electrode setups. Moreover, similar results were
obtained by using different referencing procedures. Therefore,
we employed the common average referencing. Two additional
electrooculogram (EOG) electrodes (horizontal EOG, HEOG and
vertical EOG, VEOG) were attached for monitoring ocular activity.
The EEG data were collected using Brain Vision PyCoder software
(http://www.brainvision.com/pycorder.html) and filtered online
between DC and 200 Hz with a notch filter at 50 Hz.

Customized Python codes (all scripts can be seen at https://
osf.io/mhgbj), MNE-python (Gramfort et al. 2014), Easy-EEG (Yang
et al. 2018), and Topography-based Temporal-analysis (TTT) tool-
boxes (Wang et al. 2019) were used to process and analyze EEG
data. The continuous EEG dataset was initially subject to a band-
pass filter with cut-off frequencies set to 0.1 and 30 Hz, using
finite impulse response (FIR) filtering parameters, zero-phase
(two-pass forward and reverse) noncausal filter with Hamming
window with 0.0194 passband ripple and 53 dB stopband attenua-
tion, the filter length is 33,001 samples (33.001 s). The filtered data
was divided into epochs spanning from −100 to 400 ms relative to

the onset of the auditory stimuli. The 100 ms prestimulus period
was used for baseline correction. Epochs containing artifacts
related to eye blinks and head movement were manually rejected.
A total of ∼27.93% of epochs were rejected on average across
participants. To balance the power across conditions, a method
in the MNE toolbox was applied to equalize the number of tri-
als in different scenarios. This trial-number-equalization method
selected epochs for each condition according to the condition
that had the smallest number of remaining trials, while reducing
time-varying noise by selecting epochs in different conditions that
occurred close in time. A total of ∼47 trials (32.19% of the total
epochs after noise rejection and trial-number equalization) for
each type of stimuli were included in the following analyses.

EEG data analysis
Temporal cluster analysis on ERPs in one MMN
representative channel

To test the validity of the data, we first followed the standard
analysis of MMN by performing event-related potential (ERP) anal-
ysis on the data in one representative channel Fz to demonstrate
the MMN effects (Näätänen et al. 2007). A temporal clustering
permutation test (Maris and Oostenveld 2007) was subject to the
ERP responses at the channel of Fz, separately for LD, TD, and CD
conditions. Specifically, a paired t-test was applied to the deviant
and standard ERPs at each time point. Temporal clusters were
defined by successive time points (more than two adjacent time
points) that exceeded the precluster threshold of 0.05. All the
t-values within a temporal cluster were summed to obtain the
summary empirical statistics for this temporal cluster. To obtain
a null distribution, after shuffling the condition labels, similar
paired t-tests were performed and the temporal cluster with
maximum sum t-values was selected. The shuffling was repeated
for 1,000 times and the selected maximum sum t-values in each
shuffle formed a null distribution. Last, the summary empirical
statistics of each temporal cluster calculated in original data was
tested in the null distribution with a cluster-level threshold of
0.05.

Spatiotemporal cluster analysis
To further test the spatial distribution of the effect, we carried
out a spatiotemporal clustering permutation test with data in all
electrodes. The spatiotemporal clustering permutation test was
similar to the temporal clustering permutation test, except the
clusters were determined by successive time points that were
significant at the precluster level of 0.05 in spatially adjacent
electrodes. Two-tail paired t-test at each time point in each elec-
trode was performed to take account of the polarity of ERP across
response dynamics. A similar permutation procedure of shuffling
condition labels was performed to form a null distribution. The
significance of spatiotemporal clusters was tested by comparing
the empirical summary statistics with the cluster-level threshold
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of 0.05 obtained in the null distribution. The spatiotemporal
clustering permutation test was carried out separately for LD, TD,
and CD conditions.

Latency analysis
The temporal variance among EEG channels makes the analysis
of latency in single channels unreliable. Moreover, selecting chan-
nels may be subject to subjective bias and individual differences
among participants (Tian and Huber 2008; Tian et al. 2011; Yang
et al. 2018). Therefore, to test the hypothesis regarding response
latency, we calculated the global field power (GFP), an omnibus
measure that summarizes responses in all 32 EEG channels. The
GFP is derived mathematically based on the standard deviation
across all channels at each time point. It represents the sum of
power from all channels varying across time, which minimizes the
temporal variance among channels to derive a consistent mea-
sure of latency. Individual peak latencies of MMN components
were identified in the difference waveforms obtained by subtract-
ing GFP responses to standards from those of deviants, separately
for LD, TD, and CD conditions. The latency identification was
carried out semi-automatically using the TTT toolbox (Wang
et al. 2019) in predetermined time windows based on the findings
of prior permutation tests. The identified peaks were visually
checked to verify that they were within the correct time ranges
for each participant. Repeated measures Analysis of Variance
(ANOVA) and post-hoc t-tests were subject to the MMN peak
latencies among LD, TD, and CD conditions.

Topographic dissimilarity analysis
The topography of ERP responses represents the underlying neu-
ral sources. Pattern similarity/dissimilarity between topographies
can assess the relations between underlying neural sources
among conditions (Tian and Huber 2008; Tian et al. 2011). To
test the hypothesis that the processing of CDs was the result of
two independent deviant monitoring of loudness and tones, topo-
graphic ANOVA (TANOVA) analysis was carried out using EasyEEG
(Yang et al. 2018). Specifically, a topography at each time point was
a high-dimensional vector (32 dimensions in this experiment as 32
channels in EEG recordings). The angle (θ) between two vectors of
topographies in two conditions represented the pattern similarity
between them. The cosine value of the angle, cosθ, ranging from
[−1, 1] was obtained, where 1 was a perfect match between two
topographies and −1 was completely opposite patterns. To test the
hypothesis that the neural sources of MMN in the CD condition
were different from those in LD and TD conditions, a topographic
dissimilarity index was derived by taking 1 – cosθ. Therefore,
the topographic dissimilarity index ranged from [0, 2] where
2 was the maximum dissimilarity between two topographies.
The topographic dissimilarity index was calculated between
a pair of conditions in a time window of 5 ms, consecutively
from −100 to 400 ms. To determine the statistical significance,
a nonparametric permutation test was implemented. We first
generated the null distribution of the topographic dissimilarity
index. To keep the subject’s information when permutating
data, we put each participant’ data into one pool regardless of
experimental conditions, then shuffled the pool and randomly re-
label the condition for each trial within each subject. After that,
topographic dissimilarity indices between new group-averaged
ERPs were calculated. And this permutation repeated 1,000
times to form a null distribution to correct multiple comparison
problem for a set of consecutive significant time points. Finally,
the significance of clusters was tested by comparing the empirical

topographic dissimilarity indices with the cluster-level threshold
of 0.05 obtained in the null distribution.

Simulation analysis
We further carried out a simulation using empirical data to
directly test the temporal-shift combination hypothesis. The temporal-
shift combination hypothesis assumes that the MMN in CD is a
linear combination of MMN in LD and temporally advanced MMN
in TD (Fig. 1B). Therefore, we compared the empirical MMN in
CD with simulated MMN responses that were derived by adding
a temporally shifted MMN in TD to MMN in LD. Specifically, a
time window of 100 ms in duration was used to select data for
simulation. First, the data from 100 ms to 200 ms were extracted
from the individual MMN waveforms responses in all conditions.
The epochs of LD and TD were summed at each corresponding
time point and yielded a simulated epoch. The topographic simi-
larity (cosθ) was calculated between the simulated epoch and the
extracted epoch from empirical CD at each corresponding time
point. The cosine values before and after 15 ms centered around
the individual peak latency of empirical CD were averaged to index
the topographic similarity between the simulated and empirical
CD. The higher the index of topographic similarity represents
more similar topographic patterns between the simulated CD and
empirical CD.

Next, the 100 ms time window was moved left or right in a step
of 1 ms to extract epochs in the MMN waveform responses only
for the TD condition. The maximum moving range was 100 ms in
either direction. That is, 200 epochs with each epoch of 100 ms
in duration were extracted from TD. These epochs were [0100]
ms to [200300] ms with an increment of 1 ms in the empirical
TD. Each of the extracted epochs of TD was summed with the
epoch of LD that was still extracted from 100 ms to 200 ms to
yield one simulated epoch for each moving step. Noted that the
simulated epochs yielded by the procedure of moving window and
summation are equivalent to the results of moving the TD epoch
in an opposite direction. For example, moving the time window to
the right by 1 ms resulted in extracting the TD epoch of [101201]
ms. The summation of this epoch with the LD epoch of [100200]
ms is the same as if moving the TD epoch of [101201] ms to the left
by 1 ms and then taking the summation. Therefore, for clarity, we
define a parameter, �t, to index the moving distance and direction
of the TD epoch. The negative value of �t represents the move of
the extracted TD epoch to the left (e.g. moving the time window
to the right to extract a later epoch).

After obtaining the 200 simulated epochs of CD by moving
the responses of TD, the topographies in each simulated epoch
were compared with the empirical CD epoch of [100200] ms,
and the index of topographic similarity between the simulated
and empirical CD was obtained for each moving distance. That
is, a line of topographic similarity index as a function of �t
was obtained. To statistically determine the significant period of
moving distance of TD, a bootstrap approach was employed to
generalize a null distribution of topographic similarity and the
significance threshold. Specifically, 1,000 samples were randomly
sampled with replacement out of the 100 topographic similarity
indices in the range of negative �t values (TD moved to the
left). The samples were averaged to form one data point in the
distribution. Only the data in the range of negative �t values
were used for sampling because they more likely came from the
same distribution (TD moved to the left as the MMN latency of TD
lagged that of LD and CD) and hence more conservative and could
efficiently reduce the type I error (topographic similarity indices in
the range of negative �t values were larger than those in the range
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Fig. 2. (A) The ERP results of MMN in the representative channel of Fz. The solid and dashed lines in each plot represent the ERP responses to deviant
and standard sounds in LD (left), TD (middle), and CD (right) conditions. The shaded areas indicate the significant period (P < 0.05, cluster level) in
which the ERP amplitude of deviant sounds is more negative than that of standard sounds (MMN). The significant period in the TD condition is longer
than that in LD and CD conditions, whereas the significant periods in LD and CD conditions are similar. (B) The spatiotemporal characteristics of MMN
responses in all channels. Two significant clusters were observed in the spatiotemporal clustering permutation test in LD (left), TD (middle), and CD
(right) conditions (P < 0.05, cluster corrected). The blue and red in each plot represent the time windows and spatial distributions of the two significant
clusters in negative and positive directions of amplitude differences (deviant minus standard). A topographic display of the significant clusters at the
centroid time point in each condition is illustrated at the top.

of positive �t values). This bootstrap process was repeated 1,000
times. The value at the 95th percentile in the distribution was
selected as the significance threshold. Finally, the middle point
and its corresponding �t in the period of significant points (points
above the threshold) were identified to represent the temporal
shift of responses to the tone deviant in the CD condition when
the deviants of loudness and tones were available simultaneously.

Results
Distinct deviant monitoring of loudness and
tones
To examine the temporal dynamics of MMN, we carried out a
nonparametric temporal cluster analysis on the ERP responses to
standard and deviant sounds in one representative channel of Fz,
separately for LD, TD, and CD conditions. Significant differences
between standard and deviant (MMN) were observed in all three
conditions (Fig. 2A) and followed by the reporting specification
(Sassenhagen and Draschkow 2019). The time window of MMN
differed between LD condition (duration of 73 ms, the cluster in
the observed data extended from 89 to 162 ms) and TD condition
(duration of 175 ms, the cluster in the observed data extended
from 95 to 270 ms), whereas the time window of MMN in CD
condition (duration of 99 ms, the cluster in the observed data
extended from 79 to 178 ms) was comparable to that of LD and
shorter than that of TD. The MMN in TD lasted substantially longer
(from 95 to 270 ms) than the MMN in LD (from 89 to 162 ms) and
CD (from 79 to 178 ms) in the representative channel of Fz.

To quantify the spatial distribution of MMN in addition to its
temporal characteristics, a nonparametric spatiotemporal cluster
analysis was carried out. The results in Fig. 2B revealed distinct
distributions of mismatch responses to deviants among three

conditions (including positive and negative differences). Specif-
ically, more channels were observed in the spatial cluster that
showed significant MMN effects in TD than in LD (heatmaps in
Fig. 2B). Moreover, the distribution in LD was bilateral, whereas
the distribution in TD was more central (inserted topographies in
Fig. 2B). The temporal window for the MMN spatial cluster was
longer in TD than that in LD, which was consistent with the ERP
results (Fig. 2A). The temporal and spatial differences in the MMN
between LD and TD suggested that distinct processes of deviant
monitoring for loudness and tones. In the following sessions, we
further statistically tested the temporal and spatial differences
between the MMN in LD and TD.

Moreover, in the CD condition, the distribution of channels in
the spatial cluster was similar to that in TD (Fig. 2B). However,
the temporal characteristics of MMN in CD were similar to that
in LD (Fig. 2). The dissociation in temporal and spatial charac-
teristics regarding how CD related to LD and TD indicated that
the simultaneous deviant monitoring of two features was not a
simple combination of two single deviant detection processes. In
the following sessions, we quantitatively tested how the single
deviant detection processes interact when deviants in multiple
features occurred simultaneously.

Interactive process in simultaneous deviant
monitoring of loudness and tone
To further investigate how the deviant monitoring operated
when two features changed simultaneously, the dynamics of
MMN responses in LD, TD, and CD conditions were compared.
Specifically, a GFP waveform of MMN response was calculated
in each condition (Fig. 3A) and the peak latency was identified
based on the topographic patterns (see Materials and methods
for details). According to different hypotheses (Fig. 1), the peak
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latency in the CD condition would show distinct relation to that in
LD and TD conditions. Repeated measures one-way ANOVA on the
peak latencies revealed a significant main effect of condition [F(2,
38) = 27.1, P < 0.01, ηp

2 = 0.588] (Fig. 3A, right inserted plot). Further
pairwise t-test showed that the peak latency of MMN in LD was
significantly earlier than that in TD [t(19) = −5.042, P < 0.001]. The
peak latency in the CD condition was also significantly earlier
than that in TD [t(19) = −7.726, P < 0.001]. However, the peak
latencies in LD and CD were not different [t(19) = −0.768, P = 0.452].
The onset and offset latencies of the MMN component were
not different between LD and CD either [for onset, t(19) = 0.041,
P = 0.968; for offset, t(19) = −0.373, P = 0.713]; however, they are
significantly different between LD and TD [for onset, t(19) = −3.552,
P = 0.002; for offset, t(19) = −5.503, P < 0.001] and between CD and
TD [for onset, t(19) = −3.568, P = 0.002; for offset, t(19) = −4.946,
P < 0.001]. That is, in terms of processing dynamics, LD may
dominate the deviant detection process even with the existence
of lexical tones feature in CD. That peak latency of TD differed
from that in LD and CD statistically supported the separation
of monitoring processes of loudness and tone deviants, and the
results of similar timing between LD and CD were consistent with
the feature domination and temporal-shift combination hypotheses
(Fig. 1).

To differentiate the feature domination and temporal-shift com-
bination hypotheses, the response magnitude was further tested.
Because of the similar latencies of MMN in LD and CD conditions
(mean peak latency: 128 ms for CD and 133 ms for LD), a temporal
clustering permutation test was applied to the GFP waveform
responses of these two conditions. The analysis revealed a tempo-
ral window (from 91 to 146 ms) around their peak latencies that
showed significant response magnitude differences between the
MMNs of LD and CD conditions (highlighted in the shadowed rect-
angle area in Fig. 3A). A further component analysis using a paired
t-test on individual MMN peak of GFPs showed that CD (mean:
1.470 μV) induced significantly a larger response magnitude than
that in LD (mean: 1.318 μV) [t(19) = 2.383, P = 0.028]. These results
were consistent with the temporal-shift combination hypotheses that
predicted the combinatory nature of CD.

Independent neural source patterns when
detecting combined feature changes
To further investigate how the deviant monitoring processes were
combined, topographic analyses were used to investigate the
neural dynamics of underlying sources. TANOVA revealed signifi-
cantly different topographic patterns among MMNs in LD, TD, and
CD conditions (Fig. 3B). For the conditions that only include single
feature deviant, the topographic patterns of MMN responses in TD
started to show significant differences from those in LD ∼130 ms
when the deviant responses of TD emerged. The pattern dissimi-
larity increased along the time approaching the processing peak
of LD as shown in Fig. 3A. These results were consistent with the
separation of deviant monitoring for LD and TD (Figs. 2 and 3A).

Moreover, the single feature deviant conditions (LD and TD)
were compared with the CD condition to probe the possible
dynamic changes when two levels of deviants occurred simulta-
neously. The topographic patterns of MMN in CD differed from
MMN in LD starting ∼110 ms and sustained to 210 ms. This
starting time of dissimilarity was similar to the onset time of
MMN in TD (101 ms), suggesting the topographic dissimilarity
between CD and LD was likely due to the onset of the process for
tone deviant that was available in CD. Whereas CD differed from
TD starting as early as ∼85 ms (similar to the onset time of MMN
in LD, 82 ms) and suddenly became indistinguishable ∼100 ms.

These results suggested that the LD was first processed (LD was
available in CD but not in TD and hence induced the response
pattern differences between CD and TD at the beginning), then
the TD process joined in (the additional tone deviant process in
CD may minimize the response pattern differences between CD
and TD). These results suggested that the deviant monitoring
of loudness and tones remained independent when two types
of deviants presented simultaneously—MMN of CD could be
the combination of two independent MMNs (LD and TD), which
yielded the results that topographic patterns in CD did not
resemble either LD or TD.

Interestingly, the significant pattern dissimilarity between CD
and TD emerged again after 175 ms (similar to the peak latency
of TD). The significant dissimilarity between CD and TD after the
latency of TD suggested that the processing of tone deviant could
be shifted forward in time when presented simultaneously with
LD in the CD condition—the deviant monitoring for tones started
and ended earlier in the CD condition. This temporal shift of
deviant monitoring for tones could yield different topographies
in the later time window when deviant monitoring for tones was
still processing in the TD condition but not in the CD condition. To
quantitatively test the details of this temporal shift mechanism,
we carried out a computational simulation using the empirical
data in the next session.

Computational simulations to test the
temporal-shift combination hypothesis for
simultaneous monitoring of multilevel deviants
The temporal-shift combination hypothesis (Fig. 4A, selectively high-
lighted from Fig. 1) was supported by the observations of two
independent monitoring processes that combined when deviants
of multiple features were presented simultaneously (Figs. 2 and
3). The temporal distance between the MMN in CD and TD (Fig. 4B,
selectively highlighted from Fig. 3A) was qualitatively analogs to
the temporal shift in the hypothesis (Fig. 4A). To quantitatively
test the hypothesis as well as to probe the details of the temporal
shift mechanism, a computational simulation was carried out
to reproduce the observed neural responses in CD by tempo-
rally manipulating and combining neural responses in LD and
TD. Specifically, the time series of MMN responses in TD was
temporally shifted by a parameter of �t and linearly added to
the MMN responses in LD to create a time series of simulated CD
(Fig. 4C, see Materials and methods for details). The topographic
similarity between the simulated CD and empirical CD as a function
of temporal shift �t was obtained (Fig. 4D).

The simulated CD was significantly similar to the empirical CD
in the range of �t from −70 to 10 ms (negative �t values mean
moving TD forward in time). The middle point of the significant
period was −30 ms, which was not different from the peak latency
difference between the MMN responses in LD and TD (mean
peak latency difference of −39.5 ms) [t(19) = −1.40, P = 0.178]. The
simulation results were consistent with the temporal-shift combi-
nation hypothesis and suggested that the dynamics of deviant
monitoring for tones was accelerated and temporally aligned with
the process of loudness when the deviant monitoring for loudness
co-occurred.

Discussion
Using a novel multifeature oddball paradigm, we found com-
plicated interaction between the neural processes of two sen-
sory features. The EEG results showed MMN latency differences
(Figs. 2 and 3A) and topographic differences (Fig. 3B) between

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/16/9542/7204411 by N

ew
 York U

niversity Libraries user on 04 Septem
ber 2023



Zhili Han et al. | 9549

Fig. 3. (A) GFP results of MMN latency and amplitude among three conditions. The global measures of response dynamics of MMN are represented as
the GFP waveforms, separately for each condition in different colors. The topographies of MMN responses are depicted in corresponding color boxes,
while their latencies are indicated by dashed lines. The inserted bar plot on the right shows that the peak latency in TD is significantly later than those
in LD and CD. The shadowed rectangle area across the GFP waveforms indicates the significant temporal cluster that shows amplitude differences
between LD and CD. The left-inserted plot shows the results of component analysis of MMN amplitude differences that are consistent with the temporal
cluster results. ∗ indicates P < 0.05, ∗∗∗ indicates that P < 0.001. (B) Results of topographic dissimilarity among three conditions. The index of topographic
dissimilarity was computed in each paired comparison between the two conditions. The heatmap at the bottom shows the significant results in the
topographic dissimilarity analysis using the permutation TANOVA test (see Materials and methods for details). The significant clusters are indicated by
purple (cluster-level threshold of 0.05). Topographic patterns start to be significantly different at ∼125 ms between LD and TD; whereas the topographic
pattern differences emerge earlier in the comparisons between LD and CD (∼110 ms), as well as a cluster of dissimilarity patterns between TD and CD
(∼85–95 ms). The dissimilarity between TD and CD becomes nonsignificant at a period approximately from 100 ms to 175 ms, followed by the significant
dissimilarity reappearing again starting at ∼ 180 ms. On the top, grand averaged topographies from 100 ms to 200 ms are depicted to visualize the
evolution and pattern differences among the three conditions.

deviant detection of loudness and tones, suggesting indepen-
dent and sequential responses that mediate separate analyses
of each feature in arguably hierarchical processing to achieve
loudness invariance and abstract representation of lexical tones.
Whereas complex interaction occurred when multiple acoustic
features change simultaneously. The latency of tones was tem-
porally shifted forward and aligned with the earlier process of
loudness (Figs. 3A and 4). The neural sources of the two pro-
cesses remained independent (Fig. 3B) and linearly combined,
manifested in the response magnitude of combined topographies
(Figs. 3A and 4). These consistent results support the temporal-
shift combination hypothesis and suggest that temporally shifting
and aligning independent neural representations are potential
mechanisms for balancing the computational demands between
achieving invariance and feature integration.

We observed independent neural sources operating at distinct
latencies that mediate deviant detection of loudness and tones

(Figs. 2 and 3B). These results suggest that although the featural
attributes of intensity and frequency are available in the acoustic
signals and presumably analyzed in the cochlea, the representa-
tion and hence the perception of loudness and pitch that associate
with the two attributes are established independently in a serial
manner. We found that the latency of LD was earlier than that of
tone deviant (Fig. 3A). These results are consistent with previous
findings that demonstrate the loudness perception can be estab-
lished as early as in the subcortical auditory pathway (Sun et al.
2021). Whereas the neural representation of pitch mostly emerges
at the auditory cortical level (Bendor and Wang 2005), consistent
with our observations of later latency of tone deviant.

The sequential manner of separately establishing loudness
and tones representation potentially offers a conceivable neural
procedure to achieve loudness invariance. The early loudness
process presumably establishes the loudness perception in an
independent neural representation and removes the information
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Fig. 4. Results of computational simulations using empirical data on CD monitoring. (A) The temporal-shift hypothesis, drawn and highlighted from
Fig. 1, indicates a temporal-shifted linear combination process when loudness and lexical tones change simultaneously. (B) The empirical data from
the EEG experiment, are qualitatively similar to the hypothesis in (A). Arrows in (A) and (B) indicate the moving direction of lexical tones MMN, with
the parameter �t referring to the shifted time. (C) Demonstration of the computational simulation. The empirical LD responses were linearly added
to the temporally shifted (stepwise with the parameter �t) empirical TD responses, yielding the simulated CD responses. The simulated CD responses
were compared with the empirical CD responses. Topographic similarity measures were obtained between the empirical and simulated CD responses
at each step of �t. D) the results of topographic similarity between simulated and empirical CD responses. The parameter �t on the x-axis indicates
the moving direction and amount of the empirical TD responses when creating the simulated CD, with negative indicating moving forward in time. The
topographic similarity exceeds the threshold (red dashed line) from −70 ms to 10 ms, suggesting that the topographies of simulated and empirical CD
are significantly similar. The blue dashed line indicates the middle point of the significant period, approximating the shifted time of TD when detecting
the combined loudness and lexical tones feature in CD.

about intensity in later processes for creating abstract representa-
tions of lexical tones. This sequential procedure could be a general
mechanism for achieving invariance in hierarchical processing—
the lower basic features induce independent representation in an
early stage, whereas the variance in the lower features can be
normalized and hence abstract away, only leaving the essential
information for establishing abstract representations of higher-
level perception. That is, the invariance can be achieved in a serial
process via independent representations in distinct processing
latencies.

The independent neural representations with distinct latencies
in serial processing increase the computational demands when
integrating multiple features for establishing a coherent percept.
This computational demand can potentially be fulfilled by tem-
porally shifting and aligning the two independent representa-
tions. We observed that when the deviants of loudness and tones
occurred simultaneously, two neural representations remained
independent yet the processing time changed (Fig. 3B). Consistent
with the temporal-shift combination hypothesis, the responses to TD
were shifted forward in time to a similar latency as the responses
to LD in the CD condition when two types of deviants occurred
simultaneously (Figs. 3 and 4). That is, when two features changed
together, potential interactions facilitate the processing of lexical
tones and make it temporally align with the early processing of
loudness for integration across these two features.

This temporal-shifting mechanism is consistent with the fea-
ture synchronization of binding theory (Treisman 1996). To solve
the binding problem, mechanisms of synchronized firing were
proposed, in which the to-be-integration neural representations
are firing in synchrony to label and integrate the features for a
coherent percept. For example, four segments of contour lines in

a rectangle shape would activate different orientation neurons
in corresponding receptive fields; when the four neural ensem-
bles fire in synchrony, the percept of a rectangle shape can be
established. Our results are consistent with the synchronization
for binding, indicated by the temporally shifting and alignment of
processes of two features. Unlike in vision where basic features
are processed in parallel, auditory features are processed mostly
in serial. The synchronous firing for integration necessitates the
alignment in time, presumably as manifested in the temporal
shifting observed in our study.

The observed temporal shifting for integration can occur auto-
matically without attention or feature-related task demands. As
the current oddball procedure implemented a task that was irrel-
evant to the auditory features and deviants—participants were
required to watch a silent movie and to answer questions about
what they saw, the temporal-shifting effects were observed for the
auditory features.

The main findings of multisensory integration studies indicate
two distinct manifestations of multimodal integrative responses.
The integrated responses are commonly larger than the sum
of unimodal responses—a property known as “super-additivity.”
For example, such supra-additivity effects were found in audio–
visual speech compared to unimodal speech (Calvert et al. 2000),
suggesting a possible integrated representation. However, sub-
additivity effects—the integrated responses are smaller than the
sum of unimodal responses—were also observed in multisensory
integration (Gu et al. 2008), suggesting that integrating between
different modalities could reduce variance (Knill and Pouget 2004).
Regardless of whether the effects are supra- or sub-additivity
in multisensory integration, observations of temporal facilita-
tion are commonly observed. For example, recent multisensory
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integration studies suggest that somatosensory processes can be
automatically speeded up by the co-occurrence of visual pro-
cesses (Zheng et al. 2021). Synchronized firing across separate
but interconnected cortical areas supports feature integration
(Treisman 1996), while the neural processing for different levels
of features can influence such synchronization, causing temporal
shifts. In the speech domain, the synchronous presentation of
multimodal stimuli can induce temporal facilitation in which
visual speech speeds up the processing of auditory speech (van
Wassenhove et al. 2005). The temporal facilitation in multisensory
integration is consistent with our results of temporal shifting
in the tonal process for aligning with loudness responses, sug-
gesting that the synchrony of two independent sources may be
a ubiquitous manipulation for integrating features either across
sensory modalities or across hierarchies within a single modality.
The observed linear addition is the manifestation of temporally
aligned loudness and tone responses that are mediated by two
separate neural sources, which is the initiation of integration
followed by the results of integration in a later processing stage
presumably in associate areas where supra- or sub-additivity
effects could occur.

The underlying neural mechanisms for the observed temporal
shifting could be an adjustment in the time constant in neural
processing. Our results show that the advanced peak latency of
TD is likely a consequence of faster accumulation (Fig. 3B)—the
duration of raising from onset to peak was shorted in CD than
that in TD. According to the predictive coding model (Bastos et
al. 2012), deviant detection is manifested in an error term that is
the difference between prediction and neural processes of stimuli.
Considering the assumption that the error only needs to compare
between the bottom-up and top-down neural signals, the changes
in processing timing more likely exist in the layer of feedforward
processes of sensory stimuli.

A recent study did not find significant differences between
response latencies in Herschel’s gyrus (c.f. primary auditory cor-
tex) and superior temporal gyrus (c.f. secondary auditory cortex)
when listening to speech (Hamilton et al. 2021). This absence of
effects led the authors to speculate a parallel processing account
in speech perception, contrasting with the classical view of serial
processing. In the current study, we observed both the onset
and peak latency differences between the LD and TD conditions.
These significant latency differences suggest serial processing for
multiple auditory features. More importantly, the co-occurrence
of deviants in multiple features temporally shifted the response
latencies, yielding the latencies for processing two features indis-
tinguishable. And hence, the absence of response latency dif-
ferences across auditory neural hierarchy (Hamilton et al. 2021)
could due to the automatic alignment for integrating auditory
features when processing speech. Therefore, our results are con-
sistent with the classic view of serial processing in audition rather
than the alternative of parallel processing.

The current study did not design gender as an independent
variable. Previous MMN studies did not find the gender effects
on the MMN amplitude in auditory and visual domains (e.g. Yang
et al. 2016), nor on the peak latency of the MMN (Barrett and
Fulfs 1998). Whether gender differences exist in the observed
temporal shifts in multilevel features MMN is subject to further
investigation.

Methodologically, our novel multifeature oddball paradigm
advances the investigation of MMNs. Classical auditory MMN
studies mainly concentrated on a single basic feature such as
frequency, intensity, and locations (Näätänen et al. 2004, 2007),
and single more complex and abstract features such as phonemes
and syllables in alphabetic languages (Aaltonen et al. 1987;

Sharma and Dorman 2000; Sussman et al. 2004) and lexical
tones in Chinese (Si et al. 2017). Although some studies included
multiple features, such as frequency and intensity changes in an
auditory sequence (Gomes et al. 1997; Ruusuvirta et al. 2003), one
feature change was still presented at a time. In this study, we
simultaneously changed multiple features at one instance. The
combinatory featural changes in a novel multifeature oddball
paradigm facilitate the investigation of deviant monitoring from
a new interactive perspective.

More generally, our results of different neural sources and
latencies in MMN responses to deviants of distinct features hint
that the deviant detection on different levels of features could be
mediated by a canonical neural computation with similar neural
computational structures (Bastos et al. 2012). Our results show
the earliest latency for LD and a later latency for tone deviant.
The list of latency changes added when the deviants on more
abstract representation, such as the deviant of phonetic features
for phoneme category with an MMN latency of 170 ms (Phillips et
al. 2000), an N400 component for the semantic anomaly (Chwilla
et al. 1995), a P600 component reflecting syntactic integration
processes (Kaan et al. 2000), and even later error-related negativity
when participants were aware of making an erroneous judgment
(Shalgi et al. 2009). These progressive latencies in the detection of
novelty or anomaly are associated with the timing of establishing
the particular level of representation. The common point is the
detection of changes in a given representation, but the difference
is the level of analysis on which the computation of detection
applies. These progressive latencies in distinct neural sources
for detecting deviants at distinct levels of representation hint
at a canonical neural computational structure that mediates
the establishment of representation, receiving predictions, and
comparing between the two and generating errors (Bastos et al.
2012).

The fact that the response to the TD moves forward to synchro-
nize with LD in CD condition provides important evidence sug-
gesting that the sequential dynamic processes can be modulated
by the flexible demands to fulfill featural segregation and inte-
gration. Together, we can further explore the neural hierarchy of
sequential processing when different levels of speech properties
pour into the brain.

In sum, we implemented a novel multifeature oddball
paradigm and found that the neural responses to deviants in
the loudness and tone dimensions had distinct neural sources
that activated at different latencies. Moreover, the responses to
the tone deviant advanced in time and synchronized with the
responses to the LD when two features altered simultaneously.
This temporal facilitation and synchrony of independent neural
representations are potential mechanisms for balancing the
computational demands between achieving invariance and
feature integration.
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